iptables -I INPUT -j ACCEPT -p tcp --destination-port 8001 -i lo
iptables -A INPUT -j DROP -p tcp --destination-port 8001 -i eth0
SE Linux is a feature of the Linux kernel that provides mandatory access control. This policy based access control system grants far greater control over the resources on a machine than standard Linux access controls such as permissions.
Many modern Linux distributions are shipping with SELinux enabled by default, Fedora 14 and Rhel 6 both install with it enabled.
When you run Recital Web on a SELinux enabled machine and navigate to the default.rsp page you will see something similar to the screen shot below.

If you launch the SELinux troubleshooter you will see the following problem.
SELinux is blocking the apache server from accessing the Recital server running on port 8001.

To manage you SELinux policy you must have the policycoreutils package group installed. The policycoreutils contains the policy core utilities that are required for basic operation of a SELinux system.
If you wish to use a GUI tool, you must install the policycoreutils-gui package.
At the command prompt execute the following:
As root
$ yum install policycoreutils
$ semanage port -a -t http_port_t -p tcp 8001
$ service recital restart
$ service httpd restart
We use the semanage command here to allow the http server access to port 8001. Once you have completed the steps detailed above you can go and navigate back to the default.rsp page in your borwser, where you will find the permission denied message is now replaced by the default.rsp page.

SELinux does a great job of restricting services and daemons so rather than simply disabling it, why not work with it!
When it comes to security, every little bit helps...
APPEND FROM TYPE CSV <file-name.csv>The TYPE keyword has now been enhanced to support a comma separated values (CSV) format
STRERROR()
Syntax
STRERROR( [ <expN> ] )Description
The STRERROR() function returns a string describing the last operating system error message. If the optional error number is specified then the related operating system error message will be returned.Example
mqdes=mqcreate("/myqueue", 2)
if (mqdes < 0)
messagebox(strerror()+",errno="+alltrim(str(error())))
return
endif
rc = mqsend(mqdes, "Test message")
if (rc < 0)
messagebox(strerror()+",errno="+alltrim(str(error())))
return
endif
mqclose(mqdes)
APPEND FROM <table-name>Before when appending into a shared Recital table each new row was locked along with the table header, then unlocked after it was inserted. This operation has now been enhanced to lock the table once, complete inserting all the rows from the table and then unlock the table. The performance of this operation has been increased by using this method. All the database and table constraints are still enforced.

If you have software packages which you wish to share with others or simply between your own personal machines, a neat and easy solution is to create your own YUM repository and provide your .repo file for download.
YUM is by far the easiest method of installing software on Red hat, Centos and Fedora. Not only does it mean you don't need to trawl the web looking for somewhere to download the packages, YUM does a great job of satisfying any package dependencies. As long as the required packages are available in the enabled repositories on your system, YUM will go out and get everything you need.
To create your own YUM repository, you will need to install the yum-utils and createrepo packages:
yum install yum-utils createrepo
yum-utils contains the tools you will need to manage your soon to be created repository, and createrepo is used to create the xml based rpm metadata you will require for your repository.
Once you have installed these required tools, create a directory in your chosen web server's document root e.g:
mkdir -p /var/www/html/repo/recital/updates
Copy the rpm's you wish to host into this newly created directory.
The next step is to create the xml based rpm metadata. To create this use the createrepo program we installed earlier.
At the shell type the following command:
createrepo -v -s md5 /var/www/html/repo/recital/updates
This will create the required metadata in the repodata directory of your /var/www/html/repo/recital/updates directory.
root@test repodata]# ls -l rwotal 44 -rw-r--r-- 1 root root 28996 Jan 13 21:42 filelists.xml.gz -rw-r--r-- 1 root root 284 Jan 13 21:42 other.xml.gz -rw-r--r-- 1 root root 1082 Jan 13 21:42 primary.xml.gz -rw-r--r-- 1 root root 951 Jan 13 21:42 repomd.xml
To do a final consistency check on your repository run the following command:
verifytree /var/www/html/repo/recital/updates
We now have a fully functioning YUM repository for our hosted rpm packages.
The next process is to create a .repo file in the client systems /etc/yum.repos.d directory.
Navigate to the /etc/yum.repos.d directory on your system as root.
Using your preferred text editor to create the .repo file. In this example I will call it recital.repo.
Now paste in the following lines:
[Recital] name=Recital Update Server baseurl=http://ftp.recitalsoftware.com/repo/recital/updates enabled=1 gpgcheck=1
Once that is saved, at the shell prompt on the same machine (YUM client system).
$ yum repolist Loaded plugins: presto, refresh-packagekit repo id repo name status Recital Recital Update Server enabled: 1 adobe-linux-i386 Adobe Systems Incorporated enabled: 17 fedora Fedora 12 - i386 enabled: 15,366
As you can see the Recital repo is now being picked up and we have access to all the packages it is hosting.
See how easy that was!
This is a good primer for getting familiar with using Infiniband with Redhat/Centos Linux.
http://people.redhat.com/dledford/infiniband_get_started.html
Getting Started with InfiniBand
The first step to using a new infiniband based network is to get the right packages installed. These are the infiniband related packages we ship and what they are there for (Note, the Fedora packages have not all been built or pushed to the repos yet, so their mention here is as a "Coming soon" variety, not an already done variety):