http://msdn.microsoft.com/en-us/library/cc351024(VS.85).aspx
Recital implements SQL-92 and most of the SQL-99 standard for SQL, but also provides lower level navigational data access for performing high transaction throughput. It is the choice of the application developer whether to use SQL, navigational data access, or a combination of both depending upon the type of application being developed.
STRERROR()
Syntax
STRERROR( [ <expN> ] )Description
The STRERROR() function returns a string describing the last operating system error message. If the optional error number is specified then the related operating system error message will be returned.Example
mqdes=mqcreate("/myqueue", 2)
if (mqdes < 0)
messagebox(strerror()+",errno="+alltrim(str(error())))
return
endif
rc = mqsend(mqdes, "Test message")
if (rc < 0)
messagebox(strerror()+",errno="+alltrim(str(error())))
return
endif
mqclose(mqdes)
Latest Development News
The Lianja Application Platform is a cost-effective cloud database computing platform for SMEs (Small and Medium-sized Enterprises) that lets them focus on developing and deploying business Apps without the need to invest in lengthy application development times and an expensive IT infrastructure.The three pillars of Lianja are:
- The Lianja App Builder
- The Lianja Cloud Database
- Lianja.com Apps
In this article Barry Mavin, CEO and Chief Software Architect for Recital, details how to work with Triggers in the Recital Database Server.
Overview
A trigger is a special kind of stored procedure that runs when you modify data in a specified table using one or more of the data modification operations: UPDATE, INSERT, or DELETE.
Triggers can query other tables and can include complex SQL statements. They are primarily useful for enforcing complex business rules or requirements. For example, you can control whether to allow a new order to be inserted based on a customer's current account status.
Triggers are also useful for enforcing referential and data integrity.
Triggers can be used with any data source that is handled natively by the Recital Database Engine. This includes Recital, FoxPro, FoxBASE, Clipper, dBase, CISAM, and RMS data,
Creating and Editing Triggers
To create a new Trigger, right-click the Procedures node in the Databases tree of the Project Explorer and choose Create. To modify an existing Trigger select the Trigger in the Databases Tree in the Project Explorer by double-clicking on it, or select Modify from the context menu. By convertion we recommend that you name your Stored Procedures beginning with "sp_xxx_", user-defined functions with "f_xxx_", and Triggers with "dt_xxx_", where xxx is the name of the table that they are associated with.
Associating Triggers with a Table
Once you have written your Triggers as detailed above you can associate them with the operations performed on a Table by selecting the Table tab.
The Tables tab allows you to select a Trigger procedure by clicking on the small button at the right of the Text field.
Types of Triggers
As can be seen from the Tables tab detailed below, The Recital Database Server handles 6 distinct types of Triggers.
Open Trigger
The Open Trigger is called after is a table is opened but before any operations are performed on it. You can use this trigger to record a log of table usage or provide a programmable means of checing security. If the Trigger procedure returns .F. (false), then the table is not opened. You can use a TRY...CATCH block around the associated command to inform the user.
Close Trigger
The Close Trigger is called just prior to a table being closed. In this trigger you may find it useful to get transaction counts by using the IOSTATS() built-in 4GL function, and record these values in a transaction log.
Update Trigger
The Update Trigger is called prior to a record update operation being performed. You can use this trigger to perform complex application or data specific validation. If the Trigger procedure returns .F. (false), then the record is not updated. You can use inform the user from within the Trigger procedure the reason that the data cannot be updated.
Delete Trigger
The Delete Trigger is called prior to a record delete operation being performed. You can use this trigger to perform complex application or data specific validation such as cross-table lookups e.g. attempting to delete a customer recortd when there are still open orders for that specific customer. If the Trigger procedure returns .F. (false), then the record is not deleted.
Insert Trigger
The Insert Trigger is called prior to a record insert (append) operation being performed. You can use this trigger to perform such tasks as setting up default values of columns within the record. If the Trigger procedure returns .F. (false), then the record is not inserted.
Rollback Trigger
The RollbackTrigger is called prior to a rollback operation being performed from within a form. If the Trigger procedure returns .F. (false), then the record is not rolled back to its original state.
Testing the Trigger
To test run the Trigger, select the Trigger in the Databases Tree in the Project Explorer by double-clicking on it. Once the Database Administrator is displayed, click the Run button to run the Trigger.
# recital < mrprog.prgIndividual commands can be executed in shell scripts.
# recital < myprog.prg > myoutput.txt
# recital > myoutput.txt <<END
use customers
list structure
END
# echo "select * from sales!customers where overdue" | recital | wc -l
# recital -c "create database sales"Expressions can be evaluated and used in shell scripts.
# recital -c "create table sales!invoices (id int, name char(25), due date)"
# VER=`recital -e "version(1)"`You can view what command line options are available by typing:
# recital --help
Occasionally as a Linux administrator you will be in the situation where working on a remote server and you are left with no option but to force a reboot the system. This may be for a number of reasons, but where I have found it most frequent is when working on Linux clusters in a remote location.
When the "reboot" or "shutdown" commands are executed daemons are gracefully stopped and storage volumes unmounted.
This is usually accomplished via scripts in the /etc/init.d directory which will wait for each daemon to shut down gracefully before proceeding on to the next one. This is where a situation can develop where your Linux server fails to shutdown cleanly leaving you unable to administer the system until it is inspected locally. This is obviously not ideal so the answer is to force a reboot on the system where you can guarantee that the system will power cycle and come back up. The method will not unmount file systems nor sync delayed disk writes, so use this at your own discretion.
To force the kernel to reboot the system we will be making use of the magic SysRq key.
The magic_SysRq_key provides a means to send low level instructions directly to the kernel via the /proc virtual file system.
To enable the use of the magic SysRq option type the following at the command prompt:
echo 1 > /proc/sys/kernel/sysrq
Then to reboot the machine simply enter the following:
echo b > /proc/sysrq-trigger
Voilà! Your system will instantly reboot.
{linkr:related;keywords:linux;limit:5;title:Related Articles}
{linkr:bookmarks;size:small;text:nn;separator:%20;badges:2,1,18,13,19,15,17,12}