If you have 4 GB or more RAM use the Linux kernel compiled for PAE capable machines. Your machine may not show up total 4GB ram. All you have to do is install PAE kernel package.
This package includes a version of the Linux kernel with support for up to 64GB of high memory. It requires a CPU with Physical Address Extensions (PAE).
The non-PAE kernel can only address up to 4GB of memory. Install the kernel-PAE package if your machine has more than 4GB of memory (>=4GB).
# yum install kernel-PAE
If you want to know how much memory centos is using type this in a terminal:
# cat /proc/meminfo
In this article Barry Mavin explains step by step how to setup a Linux HA (High Availability) cluster for the running of Recital applications on Redhat/Centos 5.3 although the general configuration should work for other linux versions with a few minor changes.
echo "Hello world\n"
Some options of hdparm are dangerous and are generally listed as such in the man page.
Hdparm is available from SourceForge and there is even a version for Windows.

If you are running your Redhat/Centos or Fedora machine in an enterprise environment you may be sitting behind a network proxy server like squid.
If you try and update or install software it will fail with timeouts or errors contacting the repository mirrors.
To configure YUM to work with your proxy server you need to add the following line to your /etc/yum.conf file.
Anonymous proxy configuration:
proxy=http://yourproxyip:port/
If your proxy server requires authentication add the following lines to your /etc/yum.conf file instead.
proxy=http://yourproxyip:port/ proxy_username=youruser proxy_password=yourpassword
You will be able to update and install software now, give it a go!
Specifying this seems to reslove the problem:
-Xmx512m -XX:MaxPermSize=512m
// declare an empty dynamic array
a = array()
// declare a simple dynamic array
a = array("barry", "recital", "boston")
foreach a as value
echo value
endfor
// declare an associative array
a = array("name" => "barry", "company" => "recital", "location" => "boston")
echo "length of a is " + len(a)
foreach a as key => value
echo "key=" + key + ", value=" + value
endfor
DRBD:
DRBD (Distributed Replicated Block Device) forms the storage redundancy portition of a HA cluster setup. Explained in basic terms DRBD provides a means of achieving RAID 1 behavoir over a network, where whole block devices are mirrored accross the network.
To start off you will need 2 indentically sized raw drives or partitions. Many how-to's on the internet assume the use of whole drives, of course this will be better performance, but if you are simply getting familar with the technology you can repartition existing drives to allow for two eqaully sized raw partitions, one on each of the systems you will be using.
There are 3 DRBD replication modes:
• Protocol A: Write I/O is reported as completed as soon as it reached local disk and local TCP send buffer
• Protocol B: Write I/O is reported as completed as soon as it reached local disk and remote TCP buffer cache
• Protocol C: Write I/O is reported as completed as soon as it reached both local and remote disks.
If we were installing the HA cluster on a slow LAN or if the geogrphical seperation of the systems involved was great, then I recommend you opt for asyncronous mirroring (Protocol A) where the notifcation of a completed write operation occurs as soon as the local disk write is performed. This will greatly improve performance.
As we are setting up our HA cluster connected via a fast LAN, we will be using DRBD in fully syncronous mode, protocol C.
Protocol C involves the file system on the active node only being notified that the write operation was finished when the block is written to both disks of the cluster. Protocol C is the most commonly used mode of DRBD.
/etc/drbd.conf
global { usage-count yes; }
common { syncer { rate 10M; } }
resource r0 {
protocol C;
net {
max-buffers 2048;
ko-count 4;
}
on bailey {
device /dev/drbd0;
disk /dev/sda4;
address 192.168.1.125:7789;
meta-disk internal;
}
on giskard {
device /dev/drbd0;
disk /dev/sda3;
address 192.168.1.127:7789;
meta-disk internal;
}
}
drbd.conf explained:
Global section, usage-count. The DRBD project keeps statistics about the usage of DRBD versions. They do this by contacting a HTTP server each time a new DRBD version is installed on a system. This can be disabled by setting usage-count no;.
The common seciton contains configurations inhereted by all resources defined.
Setting the syncronisation rate, this is accoimplished by going to the syncer section and then assigning a value to the rate setting. The syncronisation rate refers to rate in which the data is being mirrored in the background. The best setting for the syncronsation rate is related to the speed of the network with which the DRBD systems are communicating on. 100Mbps ethernet supports around 12MBps, Giggabit ethernet somewhere around 125MBps.
in the configuration above, we have a resource defined as r0, the nodes are configured in the "on" host subsections.
"Device" configures the path of the logical block device that will be created by DRBD
"Disk" configures the block device that will be used to store the data.
"Address" configures the IP address and port number of the host that will hold this DRBD device.
"Meta-disk" configures the location where the metadata about the DRBD device will be stored.
You can set this to internal and DRBD will use the physical block device to store the information, by recording the metadata within the last sections of the disk.
Once you have created your configuration file, you must conduct the following steps on both the nodes.
Create device metadata.
$ drbdadm create-md r0
v08 Magic number not found
Writing meta data...
initialising activity log
NOT initialized bitmap
New drbd meta data block sucessfully created.
success
Attach the backing device.
$ drbdadm attach r0
Set the syncronisation parameters.
$ drbdadm syncer r0
Connect it to the peer.
$ drbdadm connect r0
Run the service.
$ service drbd start
Heartbeat:
Heartbeat provides the IP redundancy and the service HA functionailty.
On the failure of the primary node the VIP is assigned to the secondary node and the services configured to be HA are started on the secondary node.
Heartbeat configuration:
/etc/ha/ha.conf
## /etc/ha.d/ha.cf on node1
## This configuration is to be the same on both machines
## This example is made for version 2, comment out crm if using version 1
// replace the node variables with the names of your nodes.
crm no
keepalive 1
deadtime 5
warntime 3
initdead 20
bcast eth0
auto_failback yes
node bailey
node giskard
/etc/ha.d/authkeys
// The configuration below set authentication off, and encryption off for the authentication of nodes and their packets.
//Note make sure the authkeys file has the correct permisisions chmod 600
## /etc/ha.d/authkeys
auth 1
1 crc
/etc/ha.d/haresources
//192.168.1.40 is the VIP (Virtual IP) assigned to the cluster.
//the "smb" in the configuration line represents the service we wish to make HA
// /devdrbd0 represents the resource name you configured in the drbd.conf
## /etc/ha.d/haresources
## This configuration is to be the same on both nodes
bailey 192.168.1.40 drbddisk Filesystem::/dev/drbd0::/drbdData::ext3 smb